INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 815-831

On the dynamic behaviour of interacting interfacial cracks in
piezoelectric media

X.D. Wang *

Department of Mechanical Engineering, University of Alberta Edmonton, Alberta, Canada T6G 2G8
Received 12 June 1999

Abstract

In this paper, we examine the dynamic electromechanical behaviour of interacting interfacial cracks between two
piezoelectric media under antiplane mechanical loading. The cracks are assumed to be permeable, i.e. both the electric
potential and the normal electric displacement are continuous across the crack surfaces. The electromechanical field of a
single interfacial crack was determined using Fourier transform technique and solving the resulting integral equations.
This fundamental solution was then implemented into a pseudo-incident wave method to account for the interaction
between different cracks. Typical examples are provided to show the effect of the positioning of the cracks, the material
combination and the loading frequency upon the local stress field around the crack tips. The results show the significant
effect of an electromechanical coupling upon the stress intensity factors. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Since the pioneering work of the Curies in 1880 on Rochelle salt, much attention has been devoted to the
characterisation of different piezoelectric materials, especially piezoceramics. Piezoceramic materials have
the advantages of quick response, low power consumption, high linearity and a relatively large induced
strain for an applied electric field. As a result, they had been used in the design of different smart structures,
e.g. large-scale space structures, aircraft structures, satellites, and so forth (Gandhi and Thompson, 1992;
Varadan et al., 1993; Mal and Lee, 1993; Ashley, 1995; Dosch et al., 1995). In addition, piezoceramic
actuators can be easily fabricated into different desired shapes that can be used in different applications to
achieve the highest possible displacement or force for the lowest possible voltage.

One of the most fundamental issues surrounding the effective use of piezoceramic actuators in smart
material/structure systems is that piezoceramic materials are usually very brittle. As a result, piezoceramic
actuators have a tendency to develop critical cracks during the manufacturing and the poling processes. The
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existence of these defects will greatly affect the mechanical integrity and electromechanical behaviour of this
class of material (Jain and Sirkis, 1994; Park and Sun, 1994). Another important aspect related to the
design of the integrated smart structures is the determination of the effect of debonding along the interfaces
between piezoelectric actuators/sensors and the host structures. An accurate assessment of the coupled
electromechanical behaviour of an integrated structure would, therefore, require the determination of the
local stress distribution in the structure involving the interacting cracks and interfaces.

Significant efforts had been made to the study of the quasistatic electromechanical fracture and damage
behaviour of piezoelectric materials, for example the work by Pak (1990), Sosa and Pak (1990), Sosa (1991)
and Suo et al. (1992), He et al. (1994) and Pak and Goloubeva (1995). In contrast, the dynamic behaviour
of cracks in piezoelectric materials has received much less attention, especially when multiple cracks are
involved. Existing work has focussed mostly on the dynamic behaviour of a single crack, e.g. the work by
Narita and Shindo (1998), Li and Mataga (1996a,b) and Shindo et al. (1996). It should be mentioned,
however, that piezoelectric materials are mostly being used or considered for use in situations where dy-
namic loading is involved, such as the vibration control of smart structures under impact loading and the
acoustic control of smart skin systems.

The objective of the present paper is to provide a theoretical treatment of the dynamic interaction between
interfacial cracks in piezoelectric media under dynamic antiplane mechanical loading. The current loading
condition and configuration represent the effect of the applied mechanical load upon the transverse growth
of interfacial debonding between piezoelectric actuators/sensors and the host structures. A permeable crack
model is employed in the current study. The theoretical formulations governing the steady-state problem are
based upon the use of integral transform techniques and a pseudo-incident wave method. The resulting
dynamic stress intensity factors at the interacting cracks are obtained by solving the appropriate singular
integral equations using Chebyshev polynomial expansion at different loading frequencies. Numerical ex-
amples are provided to show the effect of the geometry of the interacting cracks, the piezoelectric constants
of the material and the loading frequency upon the resulting dynamic stress intensity factors.

2. Formulation of the problem

Consider the problem of two bonded infinite piezoelectric materials containing M interfacial cracks
subjected to a harmonic incident wave of frequency w with an incident angle I', as shown in Fig. 1. The
half-length of crack # is assumed to be a,. A global Cartesian coordinate system (X, Y) and M local systems
x4, 00) (m=1,2,...,M) are employed to characterise the different cracks. The position of the centre of
crack n is given by X = X,,.

The steady-state mechanical and electrical fields corresponding to this incident wave will generally in-
volve an exponential harmonic factor exp(—iwt). For the sake of convenience, this factor will be suppressed
and only the amplitude of different field variables will be considered.

The electromechanical behaviour of a homogeneous piezoelectric material under antiplane mechanical
and inplane electric loading is fully described, as shown in Appendix A, by the following governing
equations:

Vw4 Bw=0, Vf=0, (1)
where the Laplacian operator V? stands for 0*/0x? + 0%/0)?, and w is the antiplane displacement and k is

the wave number defined by

2 2
@ =P with ¢ =g+ 2)

K11

The electric potential ¢ is given by
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Medium I

Medium II

Fig. 1. Interacting cracks between two piezoelectric media.

‘f):KTIWJFf- (3)

In the above equations, cu4, €15 and k;; are the elastic modulus, the piezoelectric constant and the dielectric
constant of the medium, respectively.
The corresponding non-vanishing stress and electric displacement components are given by:

L ow of L ow of
‘cyz—cay—f—e15ay, Ty = C 6x—i—elsax, (4)
0 0
Dx = —K11 a—{C‘, Dy = _K“%. (5)

For the current non-homogeneous medium, both the upper and lower media are governed by these
equations, in which the material constants should be replaced by those of the corresponding media.

3. Solution of single interfacial crack problem

Consider now the steady state antiplane shear problem of a single crack of length 2a between two
piezoelectric media, as shown in Fig. 2. For the current linear system, the total field can be decomposed
into the incident field and the scattering field. The mechanical boundary condition at the surfaces of the
crack is assumed to be traction free. Therefore, the scattering field should satisfy the following boundary
conditions:

w(x,0) =0 | =a, 7.(x,04+) = 1.(x,0-) = —7"(x) x| < a. (6)

The electric boundary condition of a crack in piezoelectric media had been the topic of many investiga-
tions (McMeeking, 1989; Dunn, 1994; Zhang et al., 1998). For this antiplane problem, since no opening
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Fig. 2. A single interfacial crack.

displacement exists, the crack surfaces can be assumed to be in perfect contact. Accordingly, permeable
condition will be enforced in the current study, i.e., both the electric potential and the normal electric
displacement are assumed to be continuous across the crack surfaces, which can be expressed as

Dy(x,0+) = D,(x,0—) and ¢(x,0+) = $(x,0-). (7)
The resulting scattering field can be obtained, by solving Eq. (1) using Fourier transform, leading to
f A 7oqy7isx dS, y> 0
(x y {f B zxnvfisxds’ y < 0’ <8)

= Cls)e lixds,  » >0,
Sy) {f D(s e‘qy’i”ds, y <0, 9)

where A4(s), B(s), C(s) and D(s) are unknown functions of s and o; and ay are given by

o :{ \/Sz_klzv |S| Zkla o :{ Sz_klzlv |S| Zkllv (10)
! —ik =52, |s| < ki, " —iky — 5%, |s| < k.
It should be noted that the scattering field given by Egs. (8) and (9) satisfies the zero-stress and zero-electric
displacement conditions of the scattering field at infinity.
By using the continuity conditions of electric displacement D,, electric potential ¢ and shear stress t,,
across the interface, A(s), B(s), C(s) and D(s) can be expressed in terms of one unknown function E(s) as

A (s) A (s)
A(s) = — E B(s) = E 11
() = -GEG). B =2 E). (i
C(s) = K1E(s),  D(s) = =Ky, E(s) (12)
where 4, 4, and 4 are given by
416) = (s -+ )+ s (el — el ) (13)
il

11 12 K?l
As(s) = (i3, + w)y)e o + [s]{ epsels — ey a ) (14)

i1

ol el
A(S) = %C*Hdu + %C*IOCI. (lS)
K1 K11
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In these expressions, the superscripts (subscripts) ‘I’ and ‘II’ represent the upper and lower media, re-
spectively.
E(s) can further be expressed in terms of the following unknown dislocation density function:

O[w(x,0%) — w(x,07)]

o = L0 - h<a (16)
as
i 4 = isx
E(s):—%m[ww(x)e dx. (17)

The stress distribution along the interface can then be obtained by using Eq. (4),

wle0) = [ ot [ 5 e asau, (13)

a

where G(s) is given by

8(s)
G(s)=——""— 19
( ) A](S)+A2(S) ( )
with
e06) = ~(xdy -+ e e o+ (ol B ol 1 L. (20)
11 11

The kernel of the infinite integration in Eq. (18) tends to a constant when |s| — oo, which corresponds to
the singular term of the stress component. After performing the appropriate asymptotic analysis, the fol-
lowing result can be obtained:

i
I Y 1 A2 KL I KN
P i G(s) (17 + xyp)e e = ctlegs T e 1)
), = — lim = .
s—o0 S 1 11 <1 11 _ 12&_ 12 <1
(k1 + w5y (et +eh) + (2615515 €sa — €5 I“)

By substituting Eq. (18) and (16) into Eq. (6) and making use of the asymptotic behaviour of the problem
given by Eq. (21), a system of governing equations for determining s are obtained in terms of the following
singular integral equations:

_:mdu_/_zlp(u)/om (C;is)+l> sin[s(u—x)]dsdu*—ﬁ—or ®), K <a (22)
/7: Y(u)du = 0. (23)

Eq. (22) is a first kind of singular integral equation. The solution of it includes the well-known square-root
singularity and can be expressed as
- ¢ u

V() = —7,(%) (24)

- 2 a
j=0 1—“—2

a

where 7; are Chebyshev polynomials of the first kind and ¢; are unknown constants. From the ortho-
gonality conditions of Chebyshev polynomials, Eq. (23) leads to ¢y = 0. Substituting Eq. (24) into Eq. (22),
the following algebraic equation for ¢; is obtained:
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Zcf U (5) - Zc,g, 5w, i <a (25)

where U; represents Chebyshev polynomial of the second kind with

—1)a [;* ( x )J-(sa) cos(sx)ds, Jj=2p+1,

26
(_1 )l alfy (M]S + 1) (sa) sin(sx)ds, j=2p -

gi(x) =

in which J; is the Bessel function of the first kind. Truncating the Chebyshev polynomials in Eq. (24) to the
Nth term and assuming that Eq. (25) is satisfied at N collocation points along the crack surface,

)
x,:acos(N+ln), [=1,2,...,N, (27)

Eq. (25) can be reduced to a linear algebraic system of equations of the following form:

N N

1
Z N“ chgj x;) _ﬁ ™(x;), Jj,l=1,2,...,N. (28)

= sin( N+1 =

The solution of ¢; can then be obtained by solving the following equation:

[A{c} = —{1}/Bo (29)
where
{c} =ler, e, v€yennsen] (30)
{1} = [0, 7" () T )] (31)
and,
Ay A ... Awv
. AQI: A22: AZN: )
Avi Ave oo A
with
. il
,jzzgjg;gj(x,), JI=1,2,. . N. (33)

Based on the solution given by Eq. (29), the stress distribution along the interface resulting from the current
crack can be obtained by substituting Eq. (24) into Eq. (18), such that

7z(x, 0) = [/ (a,x)[{c} (34)
in which [f(a,x)] = [fi(a,x), fo(a,x),..., fv(a,x)] and fi(a,x) (j=1,2,...,N) are given by
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(=1)a [° BoJ;(sa) cos(sx)ds, j=2p+1
f}'(a,x) = (p+1) . . .
(=1)""Va [;7 BoJi(sa) sin(sx)ds, j=2p (35)
Pa [y |44 Byl Ji(sa) cos(sx)ds, j=2p+1,
(pH fo {@ + ﬁo}t]j(sa) sin(sx)ds, j=2p,
where
/oo (—1)p+1af .
Ji(sa) cos(sx)ds = 5 J=2p+1, (36)
0 o — [‘ S+ M}
/m ) (_1)p+laj '
Jj(sa) sin(sx)ds = sgn(x) - j=2p. (37)
0

VA= @ [Vt — @ + x|

4. Interaction between cracks

For the general cases where multiple interface cracks are involved, as shown in Fig. 1, the interaction
between these cracks may significantly affect the local stress field around the crack tips. This interaction
effect will be considered in this section using a pseudo-incident wave method based on the single interfacial
crack solution.

4.1. Pseudo-incident wave method

Let us now focus our attention on crack n. In addition to the original incident wave 1°, the crack will
experience scattering waves from other cracks as depicted in Fig. 3. In this case, the effect of other cracks
upon crack n can be regarded as an unknown incident wave, pseudo-incident wave t°. Accordingly, the
behaviour of crack n can be equivalently described by a single interfacial crack between two bonded infinite
piezoelectric media subjected to an incident wave given by

™ =10 4 7 (38)

T, T,

WA [ .{/TS
ST =7

Medium II

Fig. 3. A single crack subjected to a pseudo-incident wave.
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In response to this incident wave, crack n will result in a scattering wave ti°. The total stress field in the
matrix can then be expressed as

gl = 70 7Py g, (39)

The total stress field in the matrix can also be obtained by summing up the initial field and the contributions
from all the cracks to give

M
ol — 70 4 Z T (40)
m=1

The equivalence between Egs. (39) and (40) indicates that

M

=), n=12....M (41)
m#n

Eq. (41) represents the relation between the different cracks.

4.2. Solution of interacting cracks
Based on the single interfacial crack solution discussed in Section 3, the interfacial stress at point X due
to crack m can be expressed, by using Eq. (34), as
T, (X) = [f(an, X — Xu)[{c}", (42)

where {c}" is the coefficient of Chebyshev polynomial expansion of crack m.
For any crack n, the interfacial stress acting on its surfaces induced by the pseudo-incident wave can be
obtained by substituting Eq. (42) into Eq. (41) as

@) = D [f (@20 = Xy + X,)H{c}" (43)

m#n

We are interested in the shear stress at the following collocation points:
/
xi:a,, COoS (MT[), l:1,2,...,N. (44)

By using Egs. (43), (44) and (38), the stress at these points due to the total incident wave of crack » can be
obtained as

{1, = {00 + [2'(C} (45)
where
Gt (c)!
w={ " =l (46)
O e}

with {z} being the stress due to the initial incident wave and {C} being the coefficients of the Chebyshev
polynomial expansion of the interacting cracks. [Q]" represents the interaction between cracks and is given
by
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0 [flanx =X +X)] - [f(anx — Xy +X,)]
o = [f(a1,x2 — X, +X,)] 0 oo [ X2 — X+ X,)] . (47)
[f(al,xf:’ —X1 —‘rX,,)} [f(a%xfy —X2 +Xn>] e 0
Therefore, by using Egs. (45) and (29), the Chebyshev polynomial expansion coefficients of crack n,
Y ={c" ", ..., "}, can be determined by
16 N
A" {e}" = ({1}, + [A"{C})/Bs. (48)

[4]" is a known matrix which is given by Eq. (32) with half the length of the crack a being replaced by a,. By
substituting Eq. (47) into Eq. (48), the governing equation for solving {C} can be obtained as

' 0 ... 0 (o {1
0 [%].2 8 +ﬁl0 [Q:] (cy=- Bio {t:}z (49)
0 0 o WY 0" {0

from which {C} can be determined.
The singular behaviour of the interfacial crack » is characterised by the following stress intensity factors:

K" = lim { 2n(a —xn)rﬂ(xn)},

Xp—a

Ky = lim [ /2n(a + %)5e(w)]- (50)

Xp——a

By using Eq. (34), the stress intensity factor at the right tip of crack n can be expressed in terms of ¢} as
being

N
Ky = \/a,,an;’. (51)
=

5. Results and discussion

The incident wave considered is a harmonic wave directed at an angle I with the interface, as shown in
Fig. 4. The incident antiplane displacement and the electric potential can be generally expressed as

Medium I

/

Medium II

rII

Fig. 4. The reflected and transmitted waves of an interface.
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W(in) — We—ikl (x cosI'+y sinT) d)(in) — ae—ikl(x cos I'+y sin 1"). (52)

)

This incident wave will result in a reflected wave and a transmitted wave in the upper and the lower media,
respectively. The resulting interfacial stress can be expressed as

7,.(X,0) = 1 sin ['ye ¥ cosln (53)

where 7 is the maximum value of the shear stress corresponding to the transmitted wave given in Appendix
B and I'yy can be determined by

ki cos I’ = kyp cos Iy (54)

The shear stress given by Eq. (53) was used in Eq. (49) as the boundary traction at the crack surfaces in the
determination of the scattering field. It should be recognised that the dynamic stress intensity factor pro-
duced by a time-harmonic loading is in general a complex quantity. For convenience, however, only the
amplitude of the complex dynamic stress intensity factor is considered in the following examples.

5.1. Effect of electromechanical coupling

First, we restrict our attention to the case where the upper and lower materials are identical. Fig. 5 shows
the effect of the frequency (koa) and piezoelectric constant upon the normalised dynamic stress intensity
factor (K* = Kji1/tv/ma) of a single crack of length 2a due to a normal incident wave (I = 90°) with

2
) €ls
A=—". 55
K11C44 ( )
In this figure, ky = w+/p/caq is @ wave number with p being the mass density of the medium. When the
frequency of the incident wave is low (kpa < 0.25), the effect of piezoelectricity is negligible. However, when

the frequency kya approaches 1.1, the dynamic overshoot phenomenon observed in traditional materials

0.8 !

0.0 0.5 1.0 15 2.0
k,a

Fig. 5. The effect of the piezoelectric constant upon the dynamic stress intensity factor of a single crack.
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(Wang and Meguid, 1997) is significantly intensified. This is due to the coupling between the electric and the
mechanical fields.

Fig. 6 shows the normalised stress intensity factor at the inner tips of two collinear cracks of equal length
(2a) in a homogeneous piezoelectric medium due to a normal incident wave (I" = 90°) for the case where the
distance between the two cracks is 0.3a. Similar to the single crack problem, a significant increase in the
dynamic stress intensity factor is observed when kya = 0.7. In comparison with the corresponding results
for traditional materials, the present result indicates that the piezoelectric effect will increase the sensitivity
of the stress intensity factor to the frequency of the incident wave.

5.2. Effect of the interface

The normalised stress intensity factor K* at the inner tips of two interacting interfacial cracks of equal
length (2a) due to a normal incident wave is depicted in Fig. 7, in which ky = w+/p!/cl, with p' being the
mass density of the upper medium and ¢} and cj; being the effective moduli of the upper and the lower
media defined in Eq. (2). It is assumed that the distance between the cracks is 0.3a, e} = ell =0 and
p' = p" with p" being the mass density of the lower medium. The result indicates that the increase of the
material mismatch will result in the occurrence of the maximum stress intensity factor at lower frequencies.
However, no significant change of the value of the maximum stress intensity factor with the increase of the
material mismatch is observed.

Fig. 8 shows the effect of piezoelectric constants upon the stress intensity factor at the inner tips of two
identical cracks due to a normal incident wave, for the case where the distance between the cracks is 0.3a,
Jn=1,cl, =cll, p' = p" and «}, = kI, with J; and iy being given by

2 2
e e
_ €55 _ €5
}v[ =T .1 )v” = . (56)
CagKpy Caakq)

Fig. 6. The effect of the piezoelectric constant upon the dynamic stress intensity factor of interacting cracks.
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— ¢*c,*=1.0

e c*/c,* =225
----¢'lc, =40 1
——- ¢, =9.0

—-— ¢'/c,*=25.

K*

0.5

0 . ‘ ‘
]
k,a

Fig. 7. The effect of the material mismatch upon the dynamic stress intensity factor of interacting interfacial cracks.

1 . .
0 0.5 1 1.5

k,a

Fig. 8. The dynamic stress intensity factor of interacting interfacial cracks due to a normal incident wave.

It is interesting to notice that the increase of /; results in an increase in the stress intensity factor com-
parable to that for the homogeneous medium shown in Fig. 6.

Fig. 9 shows the dynamic stress intensity factor for the case considered in Fig. 8 under an oblique in-
cident wave (I' = 45°). A dramatic effect of the piezoelectric constant upon the stress intensity factor is
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1.5

Fig. 9. The dynamic stress intensity factor of interacting interfacial cracks due to an oblique incident wave.

1.5

K*

0.5

single crack
—— crack 1
---- crack 2
——- crack 3

0.5

;
k,a

Fig. 10. The dynamic stress intensity factor of three interacting interfacial cracks.

827

observed. For the limiting case where /; = 0, the current incident wave will not produce a non-zero inter-
facial stress and therefore results in a zero stress intensity factor at the crack tips.
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2 T T T

—— single crack N -

—— crack 1 So - }
| ---- crack 2 RN
05 ——- crack 3
—-— crack 4
O 1 1 L
0 0.5 1 1.5 2
k,a

Fig. 11. The dynamic stress intensity factor of four interacting interfacial cracks.

5.3. Multiple interacting cracks

Fig. 10 shows the dynamic stress intensity factors at the right tips of three identical cracks of length 2a
due to a normal incident wave, for the case where 4; =0, Ay =1, ¢}, =clf, p' = p" and «}, = «I|. The
centres of these cracks are located at X = 0, X = 2.3a, X = 4.6a, respectively. The corresponding single
crack solution is also depicted in the same figure for comparison. The stress intensity factor of crack three is
fairly close to that of the single crack. However, the stress intensity factors at the inner tips (crack one and
crack two) show significant difference from the single crack solution.

The corresponding result of four identical interacting cracks is shown in Fig. 11, where the centres of the
cracks are assumed to be X =0, X = 2.3a, X = 4.6a, X = 6.9a, respectively. Compared to the result of
the three-crack case shown in Fig. 10, the stress intensity factors at the inner and outer tips show no
significant difference until kya approaches 0.8.

6. Concluding remarks

A general solution is provided to the dynamic interaction between interfacial cracks between two
piezoelectric media under antiplane mechanical and inplane electrical loading. The analysis is based on the
use of integral transform techniques and integral equation methods coupled with a pseudo-incident wave
method. Attention has been focussed on the study of the fundamental behaviour of the local stress field
around the crack tips. The effect of the geometry of the cracks, the material constants and the fre-
quency of the incident wave upon the dynamic stress intensity factor is examined and discussed. The study
reveals the importance of the electromechanical coupling terms upon the resulting dynamic stress intensity
factors.
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Appendix A

The equilibrium equation and Gauss’ law for a piezoelectric medium under antiplane loading are given
by

01, 01y )

=0
ox Oy +tporw=0,
0D, % =0
Ox dy

in which 7. and 7,, are the shear stress components, D, and D, are the electric displacements, while w, p and
w are the antiplane displacement, mass density and frequency, respectively. Most existing piezoceramics are
transversely isotropic, with the axis of symmetry being along the poling direction of the material. If the z-
axis is chosen to be along this direction, the non-vanishing stress components (t,. and 1,.) and the electric
displacements (D, and D,) can be expressed as

. ow n 0¢ . ow n 0¢
Txz = C44 o €15~ o Tyz = C44 6y €15~ 6y
and
ow 0 ow 0
D, = e1s 50T K ai) Dy_615$_’cll a?i

where ¢ is the electric potential, cy, €15 and k; are the elastic modulus, the piezoelectric constant and the
dielectric constant of the medium, respectively. Substituting the constitutive equations into the equilibrium
equation and Gauss’ law results in

Vw4 kEw=0, Vf=0,

where k is the wave number defined in Eq. (2).

Appendix B

Consider an incident wave directed at an angle I" with the interface, as shown in Fig. 4, given by

) = e

—ikr(x cosI'+y sin I’ in) _ T _ —ikj(x cos+y sinI"
wh 1( y )7 ¢( ) — de 1( y ).

The resulting reflected and transmitted waves in the upper and the lower media can be expressed as

W(re) — Wlefikl (x cos I't+y sin I‘)’ d)(re) _ 6Iefik1 (x cos I't+y sin 1“)7
tr) _ — . —iki(x cosI'j+y sinT (tr) __ 71 —ikpy(x cosI'yp+y sin I
wt) — wie 1 1+y 11)’ ¢ ) — Pye 1 ( -ty 1)
in which

I=r, ki cosI' = kyy cos Iy,

Wi = W + W, by =+ P
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with
Wi = (Fw+ FRe)/F, ¢ = (Fw+ Fag)/F
and
Fy = — (ky sin Tyxl} 4 «} &y sin ) (kg sin I — ky sin Tycly)
— (ky sin I'yely + €} sky sin I') (ky sin I'yely — e}sky sin T,
Fy = — (ky sin it + &} &y sin T) (el sk sin I — elsky sin I'yp)
+ (ky sin Tyl — 1} ky sin ) (kyy sin el + €lsky sin T),
(kny sin T'yels — e} sky sin ') (kyy sin T'ycl, + ki sin Iel,)
— (cyky sin I — kyy sin T'yycly) (ky sin Tyels + elsky sin T,
Fy = — (ky sin e}y — e\skyy sin Iyy) (ky sin Iyels + e} sky sin ')
— (ky sin I'yxly — 1} kg sin ) (cyky sin T+ ky sin Tycly),
F = (ciky sin T + ky sin I'eyy) (ky sin Tpx)y + ) kp sin I)
+ (ki sin F”e?s + eﬁskl sin F)z.

F

The resulting interfacial stress can be expressed as
7,.(X,0) = 1 sin ['ye ¥ coslm
where 7 is the maximum value of the shear stress corresponding to the transmitted wave given by

T = —iku(cywn + ejsdr)-
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