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Abstract

In this paper, we examine the dynamic electromechanical behaviour of interacting interfacial cracks between two

piezoelectric media under antiplane mechanical loading. The cracks are assumed to be permeable, i.e. both the electric

potential and the normal electric displacement are continuous across the crack surfaces. The electromechanical ®eld of a

single interfacial crack was determined using Fourier transform technique and solving the resulting integral equations.

This fundamental solution was then implemented into a pseudo-incident wave method to account for the interaction

between di�erent cracks. Typical examples are provided to show the e�ect of the positioning of the cracks, the material

combination and the loading frequency upon the local stress ®eld around the crack tips. The results show the signi®cant

e�ect of an electromechanical coupling upon the stress intensity factors. Ó 2001 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Since the pioneering work of the Curies in 1880 on Rochelle salt, much attention has been devoted to the
characterisation of di�erent piezoelectric materials, especially piezoceramics. Piezoceramic materials have
the advantages of quick response, low power consumption, high linearity and a relatively large induced
strain for an applied electric ®eld. As a result, they had been used in the design of di�erent smart structures,
e.g. large-scale space structures, aircraft structures, satellites, and so forth (Gandhi and Thompson, 1992;
Varadan et al., 1993; Mal and Lee, 1993; Ashley, 1995; Dosch et al., 1995). In addition, piezoceramic
actuators can be easily fabricated into di�erent desired shapes that can be used in di�erent applications to
achieve the highest possible displacement or force for the lowest possible voltage.

One of the most fundamental issues surrounding the e�ective use of piezoceramic actuators in smart
material/structure systems is that piezoceramic materials are usually very brittle. As a result, piezoceramic
actuators have a tendency to develop critical cracks during the manufacturing and the poling processes. The
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existence of these defects will greatly a�ect the mechanical integrity and electromechanical behaviour of this
class of material (Jain and Sirkis, 1994; Park and Sun, 1994). Another important aspect related to the
design of the integrated smart structures is the determination of the e�ect of debonding along the interfaces
between piezoelectric actuators/sensors and the host structures. An accurate assessment of the coupled
electromechanical behaviour of an integrated structure would, therefore, require the determination of the
local stress distribution in the structure involving the interacting cracks and interfaces.

Signi®cant e�orts had been made to the study of the quasistatic electromechanical fracture and damage
behaviour of piezoelectric materials, for example the work by Pak (1990), Sosa and Pak (1990), Sosa (1991)
and Suo et al. (1992), He et al. (1994) and Pak and Goloubeva (1995). In contrast, the dynamic behaviour
of cracks in piezoelectric materials has received much less attention, especially when multiple cracks are
involved. Existing work has focussed mostly on the dynamic behaviour of a single crack, e.g. the work by
Narita and Shindo (1998), Li and Mataga (1996a,b) and Shindo et al. (1996). It should be mentioned,
however, that piezoelectric materials are mostly being used or considered for use in situations where dy-
namic loading is involved, such as the vibration control of smart structures under impact loading and the
acoustic control of smart skin systems.

The objective of the present paper is to provide a theoretical treatment of the dynamic interaction between
interfacial cracks in piezoelectric media under dynamic antiplane mechanical loading. The current loading
condition and con®guration represent the e�ect of the applied mechanical load upon the transverse growth
of interfacial debonding between piezoelectric actuators/sensors and the host structures. A permeable crack
model is employed in the current study. The theoretical formulations governing the steady-state problem are
based upon the use of integral transform techniques and a pseudo-incident wave method. The resulting
dynamic stress intensity factors at the interacting cracks are obtained by solving the appropriate singular
integral equations using Chebyshev polynomial expansion at di�erent loading frequencies. Numerical ex-
amples are provided to show the e�ect of the geometry of the interacting cracks, the piezoelectric constants
of the material and the loading frequency upon the resulting dynamic stress intensity factors.

2. Formulation of the problem

Consider the problem of two bonded in®nite piezoelectric materials containing M interfacial cracks
subjected to a harmonic incident wave of frequency x with an incident angle C, as shown in Fig. 1. The
half-length of crack n is assumed to be an. A global Cartesian coordinate system (X ; Y ) and M local systems
(xn; yn) (n � 1; 2; . . . ;M) are employed to characterise the di�erent cracks. The position of the centre of
crack n is given by X � Xn.

The steady-state mechanical and electrical ®elds corresponding to this incident wave will generally in-
volve an exponential harmonic factor exp�ÿixt�. For the sake of convenience, this factor will be suppressed
and only the amplitude of di�erent ®eld variables will be considered.

The electromechanical behaviour of a homogeneous piezoelectric material under antiplane mechanical
and inplane electric loading is fully described, as shown in Appendix A, by the following governing
equations:

r2w� k2w � 0; r2f � 0; �1�
where the Laplacian operator r2 stands for o2=ox2 � o2=oy2, and w is the antiplane displacement and k is
the wave number de®ned by

k2 � qx2

c�
with c� � c44 � e2

15

j11

: �2�

The electric potential / is given by
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/ � e15

j11

w� f : �3�

In the above equations, c44, e15 and j11 are the elastic modulus, the piezoelectric constant and the dielectric
constant of the medium, respectively.

The corresponding non-vanishing stress and electric displacement components are given by:

syz � c�
ow
oy
� e15

of
oy
; sxz � c�

ow
ox
� e15

of
ox
; �4�

Dx � ÿj11

of
ox
; Dy � ÿj11

of
oy
: �5�

For the current non-homogeneous medium, both the upper and lower media are governed by these
equations, in which the material constants should be replaced by those of the corresponding media.

3. Solution of single interfacial crack problem

Consider now the steady state antiplane shear problem of a single crack of length 2a between two
piezoelectric media, as shown in Fig. 2. For the current linear system, the total ®eld can be decomposed
into the incident ®eld and the scattering ®eld. The mechanical boundary condition at the surfaces of the
crack is assumed to be traction free. Therefore, the scattering ®eld should satisfy the following boundary
conditions:

w�x; 0� � 0 jxjP a; syz�x; 0�� � syz�x; 0ÿ� � ÿsin�x� jxj < a: �6�
The electric boundary condition of a crack in piezoelectric media had been the topic of many investiga-
tions (McMeeking, 1989; Dunn, 1994; Zhang et al., 1998). For this antiplane problem, since no opening

xMx1x

yMy1y

2a1 2aM

Medium I

Medium II

x2

y2

2a2

Γ

Fig. 1. Interacting cracks between two piezoelectric media.
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displacement exists, the crack surfaces can be assumed to be in perfect contact. Accordingly, permeable
condition will be enforced in the current study, i.e., both the electric potential and the normal electric
displacement are assumed to be continuous across the crack surfaces, which can be expressed as

Dy�x; 0�� � Dy�x; 0ÿ� and /�x; 0�� � /�x; 0ÿ�: �7�
The resulting scattering ®eld can be obtained, by solving Eq. (1) using Fourier transform, leading to

w�x; y� �
R1
ÿ1 A�s�eÿaIyÿisx ds; y > 0R1
ÿ1 B�s�eaIIyÿisx ds; y < 0;

�
�8�

f �x; y� �
R1
ÿ1 C�s�eÿjsjyÿisx ds; y > 0;R1
ÿ1 D�s�ejsjyÿisx ds; y < 0;

�
�9�

where A�s�, B�s�, C�s� and D�s� are unknown functions of s and aI and aII are given by

aI �
��������������
s2 ÿ k2

I

p
; jsjP kI;

ÿi
��������������
k2

I ÿ s2
p

; jsj < kI;

�
aII �

���������������
s2 ÿ k2

II

p
; jsjP kII;

ÿi
���������������
k2

II ÿ s2
p

; jsj < kII:

�
�10�

It should be noted that the scattering ®eld given by Eqs. (8) and (9) satis®es the zero-stress and zero-electric
displacement conditions of the scattering ®eld at in®nity.

By using the continuity conditions of electric displacement Dy , electric potential / and shear stress syz

across the interface, A�s�, B�s�, C�s� and D�s� can be expressed in terms of one unknown function E�s� as

A�s� � ÿD1�s�
D�s� E�s�; B�s� � D2�s�

D�s� E�s�; �11�

C�s� � jII
11E�s�; D�s� � ÿjI

11E�s� �12�
where D1, D2 and D are given by

D1�s� � �jI
11 � jII

11�c�IIaII � jsj eI
15eII

15

�
ÿ eII2

15

jI
11

jII
11

�
; �13�

D2�s� � �jI
11 � jII

11�c�IaI � jsj eI
15eII

15

�
ÿ eI2

15

jII
11

jI
11

�
; �14�

D�s� � eI
15

jI
11

c�IIaII � eII
15

jII
11

c�IaI: �15�

Medium I

Medium II

x

y

2a

-τ in

Fig. 2. A single interfacial crack.
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In these expressions, the superscripts (subscripts) `I' and `II' represent the upper and lower media, re-
spectively.

E�s� can further be expressed in terms of the following unknown dislocation density function:

w�x� � o�w�x; 0�� ÿ w�x; 0ÿ��
ox

; jxj6 a �16�

as

E�s� � ÿ i

2ps
D

D1 � D2

Z 1

ÿ1
w�x�eisx dx: �17�

The stress distribution along the interface can then be obtained by using Eq. (4),

syz�x; 0� �
Z a

ÿa
w�u�

Z 1

ÿ1

iG�s�
2ps

eis�uÿx� dsdu; �18�

where G�s� is given by

G�s� � g�s�
D1�s� � D2�s� �19�

with

g�s� � ÿ�jI
11 � jII

11�c�Ic�IIaIaII � c�IaIeII2
15

jI
11

jII
11

�
� c�IIaIIeI2

15

jII
11

jI
11

�
jsj: �20�

The kernel of the in®nite integration in Eq. (18) tends to a constant when jsj ! 1, which corresponds to
the singular term of the stress component. After performing the appropriate asymptotic analysis, the fol-
lowing result can be obtained:

b0 � ÿ lim
s!1

G�s�
s
�

�jI
11 � jII

11�c�Ic�II ÿ c�IeII2
15

jI
11

jII
11

ÿ c�IIeI2
15

jII
11

jI
11

�jI
11 � jII

11��c�I � c�II� � 2eI
15eII

15 ÿ eI2
15

jII
11

jI
11

ÿ eII2
15

jII
11

jI
11

� � : �21�

By substituting Eq. (18) and (16) into Eq. (6) and making use of the asymptotic behaviour of the problem
given by Eq. (21), a system of governing equations for determining w are obtained in terms of the following
singular integral equations:Z a

ÿa

w�u�
uÿ x

duÿ
Z a

ÿa
w�u�

Z 1

0

G�s�
b0s

�
� 1

�
sin�s�uÿ x��dsdu � ÿ p

b0

sin�x�; jxj < a �22�

and Z a

ÿa
w�u�du � 0: �23�

Eq. (22) is a ®rst kind of singular integral equation. The solution of it includes the well-known square-root
singularity and can be expressed as

w�u� �
X1
j�0

cj������������
1ÿ u2

a2

q Tj
u
a

� �
�24�

where Tj are Chebyshev polynomials of the ®rst kind and cj are unknown constants. From the ortho-
gonality conditions of Chebyshev polynomials, Eq. (23) leads to c0 � 0. Substituting Eq. (24) into Eq. (22),
the following algebraic equation for cj is obtained:
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X1
j�1

cjUjÿ1

x
a

� �
ÿ
X1
j�1

cjgj�x� � ÿ 1

b0

sin�x�; jxj < a �25�

where Uj represents Chebyshev polynomial of the second kind with

gj�x� �
�ÿ1�pa

R1
0

G�s�
b0s � 1

� �
Jj�sa� cos�sx�ds; j � 2p � 1;

�ÿ1��p�1�a
R1

0

G�s�
b0s � 1

� �
Jj�sa� sin�sx�ds; j � 2p

8<: �26�

in which Jj is the Bessel function of the ®rst kind. Truncating the Chebyshev polynomials in Eq. (24) to the
N th term and assuming that Eq. (25) is satis®ed at N collocation points along the crack surface,

xl � a cos
l

N � 1
p

� �
; l � 1; 2; . . . ;N ; �27�

Eq. (25) can be reduced to a linear algebraic system of equations of the following form:

XN

j�1

cj
sin� jlp

N�1
�

sin� jp
N�1
� ÿ

XN

j�1

cjgj�xl� � ÿ 1

b0

sin�xl�; j; l � 1; 2; . . . ;N : �28�

The solution of cj can then be obtained by solving the following equation:

�A�fcg � ÿftg=b0; �29�

where

fcg � �c1; c2; . . . ; cj; . . . ; cN �T; �30�

ftg � �sin�x1�; sin�x2�; . . . ; sin�xN ��T; �31�

and,

�A� �
A11 A12 . . . A1N

A21 A22 . . . A2N

..

. ..
. ..

. ..
.

AN1 AN2 . . . ANN

26664
37775 �32�

with

Alj �
sin� jlp

N�1
�

sin� jp
N�1
� ÿ gj�xl�; j; l � 1; 2; . . . ;N : �33�

Based on the solution given by Eq. (29), the stress distribution along the interface resulting from the current
crack can be obtained by substituting Eq. (24) into Eq. (18), such that

syz�x; 0� � �f �a; x��fcg �34�

in which �f �a; x�� � �f1�a; x�; f2�a; x�; . . . ; fN �a; x�� and fj�a; x� �j � 1; 2; . . . ;N� are given by
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fj�a; x� �
�ÿ1�pa

R1
0

b0Jj�sa� cos�sx�ds; j � 2p � 1

�ÿ1��p�1�a
R1

0
b0Jj�sa� sin�sx�ds; j � 2p

(
�35�

ÿ
�ÿ1�pa

R1
0

G�s�
s � b0

h i
Jj�sa� cos�sx�ds; j � 2p � 1;

�ÿ1��p�1�a
R1

0

G�s�
s � b0

h i
Jj�sa� sin�sx�ds; j � 2p;

8><>:
whereZ 1

0

Jj�sa� cos�sx�ds � �ÿ1�p�1aj��������������
x2 ÿ a2
p ��������������

x2 ÿ a2
p

� jxj
h ij ; j � 2p � 1; �36�

Z 1

0

Jj�sa� sin�sx�ds � sgn�x� �ÿ1�p�1aj��������������
x2 ÿ a2
p ��������������

x2 ÿ a2
p

� jxj
h ij ; j � 2p: �37�

4. Interaction between cracks

For the general cases where multiple interface cracks are involved, as shown in Fig. 1, the interaction
between these cracks may signi®cantly a�ect the local stress ®eld around the crack tips. This interaction
e�ect will be considered in this section using a pseudo-incident wave method based on the single interfacial
crack solution.

4.1. Pseudo-incident wave method

Let us now focus our attention on crack n. In addition to the original incident wave s0, the crack will
experience scattering waves from other cracks as depicted in Fig. 3. In this case, the e�ect of other cracks
upon crack n can be regarded as an unknown incident wave, pseudo-incident wave sp

n . Accordingly, the
behaviour of crack n can be equivalently described by a single interfacial crack between two bonded in®nite
piezoelectric media subjected to an incident wave given by

sin
n � s0 � sp

n : �38�

Medium I

Medium II

xn

yn

2an

τsc τ0

τp
n n

n

Fig. 3. A single crack subjected to a pseudo-incident wave.
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In response to this incident wave, crack n will result in a scattering wave ssc
n . The total stress ®eld in the

matrix can then be expressed as

stotal � s0 � sp
n � ssc

n : �39�
The total stress ®eld in the matrix can also be obtained by summing up the initial ®eld and the contributions
from all the cracks to give

stotal � s0 �
XM

m�1

ssc
m : �40�

The equivalence between Eqs. (39) and (40) indicates that

sp
n �

XM

m6�n

ssc
m ; n � 1; 2; . . . ;M : �41�

Eq. (41) represents the relation between the di�erent cracks.

4.2. Solution of interacting cracks

Based on the single interfacial crack solution discussed in Section 3, the interfacial stress at point X due
to crack m can be expressed, by using Eq. (34), as

ssc
m �X � � �f �am;X ÿ Xm��fcgm

; �42�
where fcgm

is the coe�cient of Chebyshev polynomial expansion of crack m.
For any crack n, the interfacial stress acting on its surfaces induced by the pseudo-incident wave can be

obtained by substituting Eq. (42) into Eq. (41) as

sp
n�xn� �

XM

m6�n

�f �am; xn ÿ Xm � Xn��fcgm
: �43�

We are interested in the shear stress at the following collocation points:

xl
n � an cos

l
N � 1

p

� �
; l � 1; 2; . . . ;N : �44�

By using Eqs. (43), (44) and (38), the stress at these points due to the total incident wave of crack n can be
obtained as

ftgn � ftg0
n � �Q�nfCg �45�

where

ftg0
n �

s0�x1
n�

s0�x2
n�

..

.

s0�xN
n �

8>>><>>>:
9>>>=>>>;; fCg �

fcg1

fcg2

..

.

fcgM

8>>><>>>:
9>>>=>>>; �46�

with ftg0
n being the stress due to the initial incident wave and fCg being the coe�cients of the Chebyshev

polynomial expansion of the interacting cracks. �Q�n represents the interaction between cracks and is given
by
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�Q�n �
0 f a2; x1

n ÿ X2 � Xn

ÿ �� �
. . . f aM ; x1

n ÿ XM � Xn

ÿ �� �
f a1; x2

n ÿ X1 � Xn

ÿ �� �
0 . . . f aM ; x2

n ÿ XM � Xn

ÿ �� �
. . .

f a1; xN
n ÿ X1 � Xn

ÿ �� �
f a2; xN

n ÿ X2 � Xn

ÿ �� �
. . . 0

2664
3775: �47�

Therefore, by using Eqs. (45) and (29), the Chebyshev polynomial expansion coe�cients of crack n,
fcgn � fcn

1; c
n
2; . . . ; cn

NgT
, can be determined by

�A�nfcgn � ÿ�ftg0
n � �Q�nfCg�=b0: �48�

�A�n is a known matrix which is given by Eq. (32) with half the length of the crack a being replaced by an. By
substituting Eq. (47) into Eq. (48), the governing equation for solving fCg can be obtained as

�A�1 0 . . . 0

0 �A�2 . . . 0
0 . . . 0
0 0 0 �A�M

2664
3775

8>>><>>>: � 1

b0

�Q�1
�Q�2

..

.

�Q�M

26664
37775
9>>>=>>>;fCg � ÿ

1

b0

ftg0
1

ftg0
2

..

.

ftg0
M

8>>><>>>:
9>>>=>>>; �49�

from which fCg can be determined.
The singular behaviour of the interfacial crack n is characterised by the following stress intensity factors:

Kn
r � lim

xn!a

���������������������
2p�aÿ xn�

p
syz�xn�

h i
;

Kn
l � lim

xn!ÿa

���������������������
2p�a� xn�

p
syz�xn�

h i
: �50�

By using Eq. (34), the stress intensity factor at the right tip of crack n can be expressed in terms of cn
j as

being

Kn
III �

�������
anp
p XN

j�1

cn
j : �51�

5. Results and discussion

The incident wave considered is a harmonic wave directed at an angle C with the interface, as shown in
Fig. 4. The incident antiplane displacement and the electric potential can be generally expressed as

Medium I

Medium II
ΓΙΙ

Γ

Fig. 4. The re¯ected and transmitted waves of an interface.
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w�in� � weÿikI�x cos C�y sin C�; /�in� � /eÿikI�x cos C�y sin C�: �52�
This incident wave will result in a re¯ected wave and a transmitted wave in the upper and the lower media,
respectively. The resulting interfacial stress can be expressed as

syz�X ; 0� � s sin CIIe
ÿikIIX cos CII ; �53�

where s is the maximum value of the shear stress corresponding to the transmitted wave given in Appendix
B and CII can be determined by

kI cos C � kII cos CII: �54�
The shear stress given by Eq. (53) was used in Eq. (49) as the boundary traction at the crack surfaces in the
determination of the scattering ®eld. It should be recognised that the dynamic stress intensity factor pro-
duced by a time-harmonic loading is in general a complex quantity. For convenience, however, only the
amplitude of the complex dynamic stress intensity factor is considered in the following examples.

5.1. E�ect of electromechanical coupling

First, we restrict our attention to the case where the upper and lower materials are identical. Fig. 5 shows
the e�ect of the frequency (k0a) and piezoelectric constant upon the normalised dynamic stress intensity
factor (K� � KIII=s

������
pa
p � of a single crack of length 2a due to a normal incident wave (C � 90�) with

k � e2
15

j11c44

: �55�

In this ®gure, k0 � x
�����������
q=c44

p
is a wave number with q being the mass density of the medium. When the

frequency of the incident wave is low (k0a < 0:25), the e�ect of piezoelectricity is negligible. However, when
the frequency k0a approaches 1.1, the dynamic overshoot phenomenon observed in traditional materials

Fig. 5. The e�ect of the piezoelectric constant upon the dynamic stress intensity factor of a single crack.
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(Wang and Meguid, 1997) is signi®cantly intensi®ed. This is due to the coupling between the electric and the
mechanical ®elds.

Fig. 6 shows the normalised stress intensity factor at the inner tips of two collinear cracks of equal length
(2a) in a homogeneous piezoelectric medium due to a normal incident wave (C � 90�) for the case where the
distance between the two cracks is 0:3a. Similar to the single crack problem, a signi®cant increase in the
dynamic stress intensity factor is observed when k0a � 0:7. In comparison with the corresponding results
for traditional materials, the present result indicates that the piezoelectric e�ect will increase the sensitivity
of the stress intensity factor to the frequency of the incident wave.

5.2. E�ect of the interface

The normalised stress intensity factor K� at the inner tips of two interacting interfacial cracks of equal
length (2a) due to a normal incident wave is depicted in Fig. 7, in which k0 � x

�������������
qI=cI

44

p
with qI being the

mass density of the upper medium and c�I and c�II being the e�ective moduli of the upper and the lower
media de®ned in Eq. (2). It is assumed that the distance between the cracks is 0:3a, eI

15 � eII
15 � 0 and

qI � qII with qII being the mass density of the lower medium. The result indicates that the increase of the
material mismatch will result in the occurrence of the maximum stress intensity factor at lower frequencies.
However, no signi®cant change of the value of the maximum stress intensity factor with the increase of the
material mismatch is observed.

Fig. 8 shows the e�ect of piezoelectric constants upon the stress intensity factor at the inner tips of two
identical cracks due to a normal incident wave, for the case where the distance between the cracks is 0:3a,
kII � 1, cI

44 � cII
44, qI � qII and jI

11 � jII
11, with kI and kII being given by

kI � eI2
15

cI
44j

I
11

; kII � eII2
15

cII
44j

II
11

: �56�

Fig. 6. The e�ect of the piezoelectric constant upon the dynamic stress intensity factor of interacting cracks.
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It is interesting to notice that the increase of kI results in an increase in the stress intensity factor com-
parable to that for the homogeneous medium shown in Fig. 6.

Fig. 9 shows the dynamic stress intensity factor for the case considered in Fig. 8 under an oblique in-
cident wave (C � 45�). A dramatic e�ect of the piezoelectric constant upon the stress intensity factor is

Fig. 7. The e�ect of the material mismatch upon the dynamic stress intensity factor of interacting interfacial cracks.

Fig. 8. The dynamic stress intensity factor of interacting interfacial cracks due to a normal incident wave.
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observed. For the limiting case where kI � 0, the current incident wave will not produce a non-zero inter-
facial stress and therefore results in a zero stress intensity factor at the crack tips.

Fig. 9. The dynamic stress intensity factor of interacting interfacial cracks due to an oblique incident wave.

Fig. 10. The dynamic stress intensity factor of three interacting interfacial cracks.
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5.3. Multiple interacting cracks

Fig. 10 shows the dynamic stress intensity factors at the right tips of three identical cracks of length 2a
due to a normal incident wave, for the case where kI � 0, kII � 1, cI

44 � cII
44, qI � qII and jI

11 � jII
11. The

centres of these cracks are located at X � 0, X � 2:3a, X � 4:6a, respectively. The corresponding single
crack solution is also depicted in the same ®gure for comparison. The stress intensity factor of crack three is
fairly close to that of the single crack. However, the stress intensity factors at the inner tips (crack one and
crack two) show signi®cant di�erence from the single crack solution.

The corresponding result of four identical interacting cracks is shown in Fig. 11, where the centres of the
cracks are assumed to be X � 0, X � 2:3a, X � 4:6a, X � 6:9a, respectively. Compared to the result of
the three-crack case shown in Fig. 10, the stress intensity factors at the inner and outer tips show no
signi®cant di�erence until k0a approaches 0:8.

6. Concluding remarks

A general solution is provided to the dynamic interaction between interfacial cracks between two
piezoelectric media under antiplane mechanical and inplane electrical loading. The analysis is based on the
use of integral transform techniques and integral equation methods coupled with a pseudo-incident wave
method. Attention has been focussed on the study of the fundamental behaviour of the local stress ®eld
around the crack tips. The e�ect of the geometry of the cracks, the material constants and the fre-
quency of the incident wave upon the dynamic stress intensity factor is examined and discussed. The study
reveals the importance of the electromechanical coupling terms upon the resulting dynamic stress intensity
factors.

Fig. 11. The dynamic stress intensity factor of four interacting interfacial cracks.
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Appendix A

The equilibrium equation and Gauss' law for a piezoelectric medium under antiplane loading are given
by

osxz

ox
� osyz

oy
� qx2w � 0;

oDx

ox
� oDy

oy
� 0

in which sxz and syz are the shear stress components, Dx and Dy are the electric displacements, while w, q and
x are the antiplane displacement, mass density and frequency, respectively. Most existing piezoceramics are
transversely isotropic, with the axis of symmetry being along the poling direction of the material. If the z-
axis is chosen to be along this direction, the non-vanishing stress components (sxz and syz) and the electric
displacements (Dx and Dy) can be expressed as

sxz � c44

ow
ox
� e15

o/
ox
; syz � c44

ow
oy
� e15

o/
oy
;

and

Dx � e15

ow
ox
ÿ j11

o/
ox
; Dy � e15

ow
oy
ÿ j11

o/
oy

where / is the electric potential, c44, e15 and j11 are the elastic modulus, the piezoelectric constant and the
dielectric constant of the medium, respectively. Substituting the constitutive equations into the equilibrium
equation and Gauss' law results in

r2w� k2w � 0; r2f � 0;

where k is the wave number de®ned in Eq. (2).

Appendix B

Consider an incident wave directed at an angle C with the interface, as shown in Fig. 4, given by

w�in� � weÿikI�x cos C�y sin C�; /�in� � /eÿikI�x cos C�y sin C�:

The resulting re¯ected and transmitted waves in the upper and the lower media can be expressed as

w�re� � wIe
ÿikI�x cos C�y sin C�; /�re� � /Ie

ÿikI�x cos C�y sin C�;

w�tr� � wIIe
ÿikII�x cos CII�y sin CII�; /�tr� � /IIe

ÿikII�x cos CII�y sin CII�

in which

CI � C; kI cos C � kII cos CII;

wII � w� wI; /II � /� /I
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with

wI � �F1w� F2/�=F ; /I � �F3w� F4/�=F

and

F1 � ÿ �kII sin CIIj
II
11 � jI

11kI sin C��cI
44kI sin Cÿ kII sin CIIcII

44�
ÿ �kII sin CIIeII

15 � eI
15kI sin C��kII sin CIIeII

15 ÿ eI
15kI sin C�;

F2 � ÿ �kII sin CIIj
II
11 � jI

11kI sin C��eI
15kI sin Cÿ eII

15kII sin CII�
� �kII sin CIIj

II
11 ÿ jI

11kI sin C��kII sin CIIeII
15 � eI

15kI sin C�;
F3 � �kII sin CIIeII

15 ÿ eI
15kI sin C��kII sin CIIcII

44 � kI sin CcI
44�

ÿ �cI
44kI sin Cÿ kII sin CIIcII

44��kII sin CIIeII
15 � eI

15kI sin C�;
F4 � ÿ �kI sin CeI

15 ÿ eII
15kII sin CII��kII sin CIIeII

15 � eI
15kI sin C�

ÿ �kII sin CIIj
II
11 ÿ jI

11kI sin C��cI
44kI sin C� kII sin CIIcII

44�;
F � �cI

44kI sin C� kII sin CIIcII
44��kII sin CIIj

II
11 � jI

11kI sin C�
� �kII sin CIIeII

15 � eI
15kI sin C�2:

The resulting interfacial stress can be expressed as

syz�X ; 0� � s sin CIIe
ÿikIIX cos CII ;

where s is the maximum value of the shear stress corresponding to the transmitted wave given by

s � ÿikII�cII
44wII � eII

15/II�:
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